

Efficient operation at part load – The need of hour Sandeep Chittora, Power Generation Services, Siemens Limited

Restricted © Siemens AG 2018

Plant Optimization Flexibility is the new efficiency

Reduced Electricity Production Cost and Increased Competitiveness *

Reducing technical minimum plant load

Increasing Efficiency and **Performance (MW)**

Down to **30%**

Improved I&C and combustion for stable operation at lower loads

16 MW more

@ 75% load, including aging recovery effects by new hardware in HP and LP turbine at constant coal consumption

3X higher

Improved

Ramp Rates

Higher ramp rates up to 15MW/min

Reducing CO₂ **Emissions**

Up to 5% lower

An improved efficiency

leads to lower CO₂

emissions!

Reduced Costs for Starting and earlier Power Production

>60min earlier

Reduced startup-times and earlier power productions by improved I&C and hardware measures

A Balance of Plant (BoP) Optimization makes a significant contribution to economic values

* Values are based on a 500 MW reference steam power plant

Restricted © Siemens AG 2018 Page 2 01.11.2019

Sandeep Chittora

Services and Digital

Plant Optimization Total Plant Evaluation is key for successful operation in deep part load

Balance of Plant (BoP) Assessment for Boiler, Condenser, Steam Turbine & Auxiliaries

Boiler

Fuel Supply Instrumentation & Controls Combustion Concept & Operation Thermal Design Fans and Pumps

Boiler Feed Pump (incl. Motor or turbine drive)

Feed Water Heaters

Blading Operation Steam Seal	Terminal Temperature Difference (TTD) Condensate Pump
Drains Steam Piping System	Cooling Water System

Restricted © Siemens AG 2018

Page 3 01.11.2019

40% Technical Minimum is Possible – NTPC Dadri

Cond.	M %	Ash%	C %	Η%	N %	S %	0%	GCV (kcal/kg)	VM%	Ash %
Air dried	4.03	37.29	43.63	3.26	1.01	0.35	10.43	3000	22%	35%

Restricted © Siemens AG 2018

Page 4 01.11.2019

Influence on Ramps on Temperature Transient

Page 5 01.11.2019

Sandeep Chittora

Services and Digital

Lower technical minimum is better than two shift operation

Comparison of life consumption based on cold, warm and hot start

Start	Life Consumption	IEC 45 permissive
Cold Start	23 – 75 hours	100
Warm Start	15 -17 hours	700
Hot Start	<u>10 -12 hours</u>	3000
Load Change	3 hours	-

Transient Operation (Ramp Up / Ramp Down)

increased temperature gradient results increased life consumption

Restricted © Siemens AG 2018

Page 7 01.11.2019

SIEMENS

SIEMENS Ingenuity for life

Time for crack initiation

Number of (thermal) cycles to crack initiation [cycles]

Operational Strategy

- <u>Part load may lead to steam temperature changes</u>, especially hot reheat temperature
- Thermal stresses due to temperature changes across thick wall components are detrimental to life consumption
- Careful analysis and suitable modification would lead to improved fatigue behavior and reduce maintenance requirements

Restricted © Siemens AG 2018

Page 8 01.11.2019

100

80

Design with

Power on Demand Reduction of Wall Thickness to Improve Start Up & Cycling Capabilities

Example: Reduced Casing thickness & reduced thermal

piston loading by HP bypass cooling

Page 9 01.11.2019

Sandeep Chittora

Services and Digital

Performance at lower part load factor

210 MW modernization leads to 25 paisa savings in cost of generation with payback period of ~3 years

Restricted	© Siemens	AG 2018
Page 10	(01.11.2019

Part Load Efficiency: Turbine hardware upgrade HP Turbine

* Relative to aged condition (both in fixed pressure operation)

Part Load Efficiency: Turbine hardware upgrade HP + LP Turbine

Restricted © Siemens AG 2018

SIEMENS

Part Load Efficiency: Turbine hardware upgrade

HP Turbine with control stage

Part Load Efficiency: Turbine hardware upgrade with control stage HP + LP Turbine with control stage

Restricted © Siemens AG 2018 Page 14 01.11.2019

Sandeep Chittora

Services and Digital

** Relative to new and clean conditions

Part Load Efficiency: Turbine hardware upgrade with control stage HP + LP Turbine with control stage

SIFMFNS

Return on investment with hardware upgrade Potential Benefits

For the corresponding 500MW steam power plant the modernization of the Turbine Hardware (new HP module with control stage / new LP rotor and inner casing) would result in significant savings for coal. Taking this into account, the return of invest period accounts to 4 - 5 years. Additional benefits like the avoided CO₂ and the enhanced ability for fast load changes are not even considered here.

* This example is based on a modernization of a 500MW-coal-fired power plant in India (KWU-design)

Restricted © Siemens AG 2018Page 1601.11.2019

Sandeep Chittora

SIEMENS

Reduced Startup-times: Heating blankets

ST Warm Standby Operation to prepare for fast start-up

Technology

- Electrical heating system for ST in turning gear
- Maintains rotor shaft temperature at warm startup conditions

Benefit

- Significant reduction of startup time
 - > 60 min. earlier power production
- Reduction of EOH consumption per start
- Less energy is bypassed to condenser
 - Reduced costs per start up

Electric heating coils to keep HP/ IP Turbine casing and shaft in warm start conditions

SIEMENS Ingenuity for life

Key Takeaway

- Lower Technical Minimum is better operation than two shift operation
- Subcritical fleet is more suitable for flexible operation with respect to loss in performance
- Lower Technical Minimum with part load performance improvement is possible, unit specific changes needs to be applied
- Means of improving part load efficiency by upto 4% are available
- Need based R&M is the approach for part load performance improvement

Contact information

Sandeep Chittora Head – Portfolio Consulting Siemens Limited, India Phone: +91 124 2842650 Mobile: +91 9971170337

E-mail: sandeep.chittora@siemens.com

Power on Demand

Monitoring of flexibility consequences: steam turbine EOH counter 4.0

Task

- Part load may lead to steam temperature changes, especially hot reheat temperature
- Thermal stresses during operation are not considered in standard counting of equivalent operating hours (EOH counter)
- Maintenance needs may not be recognized

Solution

- Evaluation of operational history
- Implementation of a state of the art EOH counter considering load changes

Benefits

- More accurate EOH counting
- Improved outage planning
- Enhanced operational flexibility

IV. Generation

EOH counting also considering load changes

III. Generation

EOH consumption is a function of actual thermal stress

II. Generation

Introduction of three start-up modes with fixed EOH consumption

I. Generation

Maintenance interval defined by operating hours and number of starts

Maintenance Flexibility Fatigue Monitoring System

Restricted © Siemens AG 2018 Page 21 01.11.2019

Maintenance Flexibility Fatigue Monitoring System

Online calculation of Boiler Fatigue Components is possible

Both Creep Fatigue and Low cycle fatigue calculated

Depending upon the actual operating mode, residual life of critical components is determined

Restricted © Siemens AG 2018 Page 22 01.11.2019 ٠

Y-Piece (e.g. before HP turbine)

SIEMENS